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LElTER TO THE EDITOR 

The q-deformed boson realisation of the quantum group SU(n), 
and its representations 

Chang-Pu Sun?$§ and Hong-Chen Fu$ 
t CCAST (World Laboratory), P 0 Box 8730, Beijing, People's Republic of China 
$ Physics Department, Northeast Normal University, Changchun, People's Republic of 
Chinall 
5 Theoretical Physics Division, Nankai Institute of Mathematics, People's Republic of 
China 

Received 30 August 1989 

Abstract. The q-deformed boson realisation of the quantum group SU(n),, ( ( A , , - , ) ' , )  is 
constructed and certain types of representations of SU(n), ,  are obtained in the q-deformed 
Fock space by this boson realisation. The Jimbo representations of the quantum group 
SU(2),, are given as an example in this letter. 

Recently, as a new type of algebraic structure, the q-deformation of Lie algebras has 
been discovered by Jimbo [ 1-31 and Drinfeld [4]. It is mathematically a Hopf algebra 
and loosely called the quantum group. It appears when one tries to solve the famous 
quantum Yang-Baxter equation (QYBE) from different physical models, such as the 
exactly soluble models in statistical mechanics, integrable models in two-dimensional 
field theory, etc. The representations of the quantum group associated with its QYBE 

are of central importance in these problems. So it is important to study the representa- 
tions of quantum groups. 

The boson realisation method is a useful method for studying representations of 
groups. It has been used to construct indecomposable representations of Lie algebras 
[5], Lie superalgebras [ 6 ]  and Loop algebras [7] and give inhomogeneous differential 
realisations of Lie algebras [8]. In this letter, by introducing the q-deformation of the 
Bose algebra, we generalise the usual boson realisation method to obtain explicit 
expressions for the representations of the quantum group SU( n ) q  ( (Afl- l )q) .  

We first consider a q-deformation of the one-state Bose algebra (we call it q Bose 
algebra 3,) generated by operators b, bt, U and N in Hilbert space that satisfy 

bbt - q- 'btb = q N  [ B ,  bt] = bt [N, b ]=-b  
(1) 

[U, X I  = 0 v x  E 3,. 
When the parameter q + 1 (or q =e', h + 0 ) 8 ,  becomes the usual Bose algebra. It is 
easy to prove that 

Nbt" = b t N  + nbtn 

btqN = q-'qNbt bqN = qqNb (2) 
r n 1 =  (9" - q-")/(q - 4 - l )  

bbt" = ql-"[n]qNbt"-l + q-flbtflb 
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by induction from ( 1 ) .  The relations in (2) can naturally be extended to the case of 
the n-state Bose algebra { b i ,  br, U, Nil i = 1 , 2 , .  . . , n}. For the n-state Bose algebra we 
define the q-analogous Fock space F, (also called q-Fock space) with the basis 

where the vacuum state 10) satisfies bilO) = 0, NilO) = 0 ( i  = 1 , 2 , .  . . , n). Then, it follows 
from (2) that 

4 l m j ) =  mjlmi) j =  1 , 2 , .  . . , n. 
For given classical Lie algebra Y with the Chevalley basis { h l ,  e i , f ; ,  i = 1,2 ,  . . . , I} 
which satisfies 

[ h i ,  h,]=O [ei ,f , l= 6$i 

[ h i ,  e,] = A-e. V J [ hjJ = -Ace, 

(A is the Cartan matrix of 2). A q-deformed boson realisation (also called a q-boson 
realisation) of the quantum group Yq associated with the Lie algebra 2 is a mapping 
B of Y onto the operator algebra 0 on the q-Fock space Fq, which satisfies 

[ h : . , h ; . ] = O  [ Zi, j ]  = S,[  h:] - -  e 

[ Ki4] = A..Z. V J [h i ,  f , ]  = -A..f ,  V J  

.f= B ( x )  v x  €9 

where we define 

for any operator 6. The q-Boson realisation of 2, generated by {g I ,  t?,, 3, i = 1 , 2 , .  . . , 1 )  
can be regarded as a subalgebra of 0, i.e. Sq c 0. 

Consider the Lie algebra An-l = SU( n) with the Chevalley basis 

hj = EJ - Ej+l,j+l eJ = I J ;  = E.+,., j = 1,2,  . . . n - 1 (7) 

where E is a n x n matrix with elements 
realisation of its quantum group ( A n - l ) q  is given by 

= S,,SJ, (a ,  p = 1 , 2 , .  . . n). The q-boson 

- 
' J  = NJ - NJ+, CJ = b;bJ+, 1 = b;+ibJ j = 1,2,  . . n - 1 .  (8) 

By direct computation we check 

where A, = 26, - 6v+1 - S I , J - I  is a element of the cartan matrix A of SU(n). 

by defining the action of (An- l )q  on Fq 
Now, we construct the representations of from the Boson realisation (8) 

W)l4 = X I 4  VX E (An - 1 ) q  lu) E Fq 
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r(2)(f2) = 
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0 0 o o m o  

o m 0 0  0 0 
0 0 0 0 0 0  

obtaining 

r(h;)lm,) = (m, - m,+l) /m) 
r ( ( ) lm)=([m,+, l [m,+ 11)"~Im~ +6, - 6 , , + J  (10) 

r ( J ) l m ) =  ( [ m , ~ [ m , + , +  11)"~Im~ - s , + ~ , . , + ~ ) .  
Because the sum Cy=,  m, remains the same under the action of r, Fq is decomposed 
into the direct sum of all the invariant subspaces Frl ( m  = 0,1,2, .  . . ): 

Each one of these subspaces FI/"] ( m  = 0, 1, . . . ) carries an irreducible representation 
r[" of ( A n - l ) q  with dimension 

( n + m  - l ) !  
m ! ( n  - I ) !  ' 

d : =  

When q + l ( q  = e, f i  -+ 0), the representation rrml becomes a symmetrised representation 
of Lie algebra A,,-, labelled by the Young diagram 

1 1 1  ... H I I .  
In fact, from (10) we can give explicit matrices of some representations of the 

quantum group (An- l )q ,  For example, when n = 3 and M = 2 ,  the six-dimensional 
representation of SU(3), = ( A 2 ) q  on the basis {12,0,0), /0,2,0), 10,0,2), 
11, 1, O), IO, 11>, IlOl)) is 

rrzl( e',) 

r"21(il) = diag[2, -2,0,0, -1, 11 

TrZ1(h;) = diag[O, 2, - 2 ,  l,O, -11 

0 0 o m 0 0  
0 0 0 0 0 0  

rrzl( c2) = 
0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  
0 0 0 0 0 1  

, o o  0 0 0 0 

0 0  0 om0 

o o m o  0 0 
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By defining angular momentum basis 
is rewritten as 

= Ij + m, j - m) for the representation, (13) 

This is just the Jimbo representation, which becomes the standard irreducible rep- 
resentation of SU(2) when q +  1 .  

The method used in this paper can be applied to Cn-, and also expected to study 
quantum groups of any classical Lie algebra by further generalisations. 
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